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Three Response Types for Broadening the Conception of Mathematical Problem
Solving in Computerized-Adaptive Tests

Abstract

We describe three open-ended response types that should broaden
the conception of mathematical problem solving embodied in
computerized-adaptive admissions tests. The Mathematical
Expressions response type presents single-best answer problems
that call for an algebraic formalism, the correct rendition of
which may take an infinite number of surface forms. Generating
Examples presents loosely structured problems which may have many
good answers, taking the form of a value, letter pattern,
expression, equation, or list. Graphical Modeling problems ask
the examinee to represent a given situation by plotting points on
a grid, where there may be a single-best answer or multiple
correct responses. Finally, these three basic types can be
combined to form extended constructed-response problems. For
each of the three basic types, this paper gives example items,
describes the examinee interface and approach to automatic
scoring, and reports available findings.

Current postsecondary admissions tests tend to take a relatively
restricted view of the nature of mathematical problem solving. This view is
evident in the questions the tests present. Those questions are primarily
multiple choice and, as a result, invariably well-determined; that is, they
are tightly structured, containing all the information needed to reach a
single best answer. Also, questions typically focus on formalisms, giving
limited attention to more qualitative representations.

This restricted view of mathematical problem solving is replicated in
the computerized versions of admissions tests like the GRE General Test and
Graduate Management Admission Test. This replication is understandable as
the priorities in first-generation computerized tests are on making the
transition from paper to electronic delivery and from linear to adaptive
testing. However, computerized testing offers an opportunity to improve
assessment far beyond the conveniences associated with electronic delivery
and adaptive testing (Bennett, 1997).

Our work is targeted toward broadening the view of mathematical problem
solving underlying computerized adaptive tests. This broadening is based on
a description of mathematical problem solving in terms of structure and
representation. This description is closer to, but not as comprehensive as,
conceptions currently favored in the mathematics education and research
communities (e.g., NCTM, 1989).

Following Simon (1978), problems are asserted to lie on a continuum
from well- to “ ill” -structured. Ill-structured problems have more complex
and less definite criteria for knowing when a solution is reached; do not
include in the instructions all the information needed to answer and offer
only a vague sense as to what information is relevant; and have no simple
* legal move generator” for finding all of the alternative possibilities for
each solution step. Many of the more important problems encountered in
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academic disciplines, in job settings, and in everyday life are of this kind
(Frederiksen, 1984).

Problem representation refers to the type of reasoning the examinee
must use to model a given situation. While different representations may be
used during intermediate problem-solving stages, admissions test questions
tend to call for responses that take a quantitative form. This emphasis
ignores the importance of qualitative representations. Research has
documented qualitative reasoning as one of several dimensions along which
experts and novices differ (Glaser, 1991). Proficient problem solvers are
able to reason using both formal representations and less formal, sometimes
intuitive, qualitative descriptions. 1In addition, competence in representing
situations qualitatively is generally regarded as a sound basis for learning
formalisms. Finally, the ability to translate among different representa-
tions of the same situation, or of the same mathematical concept, is regarded
as a powerful problem-solving tool (NCTM, 1989, p. 146). Consequently, the
qualitative aspect of mathematical reasoning may provide an important
complement to the symbolic element we now emphasize.

Table 1 crosses problem structure and representation to offer an
idealized, high-level view of mathematical problem solving. As noted,
current admissions tests generally accent well-structured, multiple-choice
questions that call, at least in terms of the final answer, for a
quantitative representation. Such tests concentrate their coverage on the
upper-left quadrant of Table 1. 1In this paper, we describe three
automatically scorable response types for computerized-adaptive tests that,
in combination, should move us toward a broader conception of mathematical
problem solving. These response types extend coverage both within the upper-
left quadrant and more fully into other sections of the table.

What is a Response Type?

Bennett and Bejar (1997) propose a model for the components of a
computer-based test that includes a construct definition, along with a test
and task design that operationalizes the construct; an examinee interface; a
tutorial; test development tools; an automated scoring routine; and some
method for communicating assessment results. An extension of the paper-based
notion of item type, the term “ response type” is narrowly intended to
subsume the examinee interface, the general task design or task class that
this interface delivers, and the scoring routine. The response type exists
as an off-the-shelf package available to assist in operationalizing some
target construct. This operationalization occurs through a systemic
interaction among the computer-based test components. A response type puts
broad boundaries on the construct domain that can be measured, so that any
given application may represent only a portion of the domain that could
potentially be covered. More precise specification occurs through the test
design and through finer levels of task description.

The response types we depict have several characteristics. First, as
for all response types, ours are quite general. For each, items can be
written that range widely in difficulty and in the skills emphasized. We try
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to communicate this generality by example. However, we give the most
emphasis to task classes covering skills that are arguably somewhat distinct
from those that would be represented by conventional versions of these same
types. Second, although we present our response types as a conceptual
package, each is an off-the-shelf component. Testing programs will use (or
not use) these components as they see fit. 1In all likelihood, our types will
be integrated (individually or in combination) into tests comprised of
conventional types. Third, each type is open ended in deference to the
concerns expressed by educators and testing critics who feel that
standardized assessment falls short because of the narrow substantive limits
that dependence on the multiple-choice format enforces. Thus, our argument
for these response types is based largely on the proposition that they move
us toward a theoretical conception of mathematical problem solving more
consonant with the values of the education community (e.g., NCTM, 1989), and
that could not be realized solely through the dominant question format.
Finally, these response types are automatically scorable in real time, making
them feasible for use in any situation where immediate or inexpensive scoring
is warranted. ‘

Mathematical Expression

The Mathematical Expression (ME) response type allows presentation of
any item for which the response is a rational symbolic expression (Bennett,
Steffen, Singley, Morley, & Jacquemin, 1997). The response type was created
primarily to present mathematical modeling problems as part of an
experimental GRE test for applicants to quantitatively oriented graduate
programs. For this test, the development committee felt that it was critical
to include items requiring the construction (as opposed to recognition) of
formal mathematical models.

Interface. Figure 1 illustrates the ME interface along with a sample
problem. (Additional, lower-level, problems are given in Table 2.) The
examinee enters expressions of any desired complexity by clicking on the
buttons shown. Among other things, these buttons represent numbers and
operators, bring up a variable and constants menu, and turn on superscripts
or subscripts. There are several interface features designed to prevent
entry of responses that, through input mistakes, might prove unscorable.
These features include disabling some response sequences (e.g., entering a
radical in superscript mode thereby creating an irrational expression),
disallowing keyboard entry to discourage examinees from entering superfluous
text, and checking syntax for such things as unbalanced parentheses or
illegally juxtaposed operators.

Automatic scoring. The challenge for scoring ME items is one of
mathematical paraphrase. That is, there are infinite ways to express the
same mathematical relationship. For example, in field trials, the following
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were among the correct responses examinees produced for the problem shown in
Figure 1:

-1/4 * x + (9/4) 1/4 * (9-x)

-x/4 + 9/4 (-x +9) /4

-.25x + 2.25 2 - 1/4 * (x-1)

(9-x) /4 (-1*x + 9) /4 i

To meet this challenge, two scoring programs were created, each using a
different approach. The first program used well-established symbolic
computation principles to test examinee responses for algebraic equivalence
with the key (which is also a mathematical expression). For example, given
the key, x/2, and an examinee entry of 2x/4, the algorithm would construct
the expression, (x/2)-{2x/4). Next, the algorithm would reduce the 2x/4 term
by 2 and subtract the remainder from x/2. The result of 0 would imply that
the key and response were algebraically equivalent.

The second approach to scoring employed an evaluation methodology.
Again, the algorithm would use the key and examinee response to construct the
expression, (x/2)-(2x/4). It would next evaluate this expression at x=0 and
finding a 0 result, conclude that both expressions had the same value at x=0
The algorithm would proceed to evaluate the constructed expression at x=1,
again finding a 0 result, suggesting that both given expressions had the same
value at x=1. Since if two points of one line (in this case, y=x/2) match
two points of a second (y=2x/4), all points of the first will match all
"points of the second; therefor, no more points need be evaluated to conclude
that the key and examinee response are equivalent. For nonlinear
expressions, the number of points needed is one greater than the degree of
the polynomial. Currently, 50 points are evaluated at random regardless of
the degree of the response, providing more than enough accuracy for the kinds
of questions that need to be scored.

The two scoring methods have notable differences. One difference is
that the symbol manipulation approach is more theoretically sound and
virtually guaranteed to produce correct results. A second difference is more
practical. The symbolic engine performed well with the high-powered work
stations it was developed on. However, since adaptive testing requires real-
time scoring, the algorithm needed to work on the low-end machines that
populated test centers. When we tested it on center machines, we found that
it demanded more computing resources than those machines could provide, such
that very complex expressions took too long to score. To prevent the
slowness of scoring from interrupting the flow of testing, the symbolic
engine was modified to return a correct or incorrect score within one second,
otherwise marking the item response as “ indeterminate.”

To test scoring accuracy, Bennett, Steffen, Singley, Morley, and
Jacquemin (1997) ran the symbolic engine against the responses of 1,864
volunteers, each of whom took four of 33 ME items along with questions of
other types. Of 6,834 nonblank ME item responses, there were 26 instances
where the algorithm marked as wrong what human review revealed to be right.
This constituted an accuracy rate of 99.62% or 38 errors per 10,000
responses, approaching the rate for scanning multiple-choice answers which
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runs about 99.95%, or S5 errors per 10,000 answers (J. McDonald, personal
communication, July 18, 1996).

For ME, the 26 miss-scorings fell into two categories. Twenty-three
involved examinees using subscripts incorrectly, causing the algorithm to
misinterpret the response (e.g., entering Cl1 instead of C, or entering r,,
with the subscript being a letter, instead of r, where the subscript is a
numeral). The second category involved 3 otherwise correct entries where the
examinee used the variable and constants menu to enter unit abbreviations
(e.g., “mi” for miles). These abbreviations were treated as concatenated
variables (e.g., m x i) and thus misinterpreted.

We have since rerun the evaluation engine against this same data set.
It, too, scored all but the same 26 (of 6,834) responses accurately, thus
matching this aspect of the symbolic engine’s performance.

Whereas this data set was processed off-line, we made sure to do that
processing on a low-end machine so that we could identify the frequency of
unscored, indeterminate responses. As it turned out, the symbolic engine
produced a score for all submissions, primarily because the items posed did
not require complex responses. However, there is always the possibility that
by mistake or malice, an examinee will enter such a response.

Because we wanted to push the limits of the symbolic engine, we had
test developers concoct 20 hard expressions and 292 difficult paraphrases.
The symbolic algorithm was able to process 205 (70%) of the paraphrases, all
of which it scored accurately. The algorithm rejected the remaining 87
paraphrases (returning scores of * indeterminate” ), because the expressions
exceeded its processing limitations. When we reran the evaluation engine
against these 20 difficult expressions (again on a low-end machine), it
scored all 292 paraphrases correctly.

An outstanding issue is how to handle the response classes that both
engines scored inaccurately. With multiple choice, scoring errors are caused
primarily by improper examinee entries, such as failing to completely erase
one darkened bubble after marking another. For that situation, the first-
line remedy has been to train examinees through the test bulletin to avoid
making such responses. For ME, the root cause appears also to be improper
entries, some of which we can correct for computationally more easily than
others. For instance, we can readily change the processing to -treat all
entries of subscript letter * o” as subscript zero, thereby removing one
source of error. However, given the low frequency of the remaining errors
and the difficulty associated with handling them computationally, we will try
to reduce their occurrence through clearer test directions before attempting
more demanding approaches.

Psychometric characteristics. Because ME was initially developed as
part of an experimental test for applicants to quantitatively oriented
graduate programs, the published psychometric work has focused on evaluating
its functioning in that context. While these results represent only the
early stages of a larger empirical effort, they are relevant to the
validation argument.

For the experimental measure, several response types were field tested
including standard multiple choice, entering numeric values, and shading
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portions of a coordinate system. Results reported by Bennett et al. (1997)
showed ME items to have roughly the same distribution of difficulty as
questions from the other response types. In addition, ME questions had item-
total correlations similar to those for other items. Third, ME items took no
longer to answer than other constructed-response problems written to measure
mathematical modeling skills (though both types took longer than multiple-
choice modeling questions). Finally, ME showed gender differences comparable
to those for other quantitative questions.

In comparison with the other response types employed in the
experimental measure (and with those in adaptive tests generally), the ME
interface is quite complex. That complexity is cause for concern as the
individual differences we capture in ME performance could well reflect, in
part, proficiency with the interface. To test that hypothesis, Gallagher and
Cahalan (in progress) asked approximately 200 examinees to complete parallel
computer-delivered and paper-and-pencil ME tests (where the latter version
simply posed ME questions on paper and allowed the examinee to hand-write an
expression). In addition to these two tasks, participants took a
computerized ME editing and entry test that required them to compose or
modify given expressions using the ME interface. Gallagher and Cahalan then
attempted to predict computer-based ME scores from the editing and entry
scores, after controlling for paper-based ME performance. Preliminary
results failed to show any main effect for the editing and entry test.

While the evidence to date shows no negative effect of the ME interface
on the scores of those intending to apply to quantitatively oriented graduate
programs, we must continue to improve the design. For one, we might expect
those with less computer familiarity to have greater difficulty expressing
their mathematical knowledge than members of the current target population.
Second, even those in our population have reported deficiencies. One such
deficiency comes from the fact that examinees are accustomed to the speed and
ease of expressing themselves mathematically on paper--and, in fact, work ME
problems that way until entering their final answer. The temporal
juxtaposition of working on paper and then computer makes the convenience
differences between the modes all the more noticeable. Thus, it is no
surprise that Gallagher and Cahalan report many examinees feeling that
computer input was too slow. More worrisome, however, is that many
participants also indicated the interface impeded solution entry. In fact, a
review of the paper-and-pencil ME responses located answers that wouldn’t
have been accommodated easily by the computerized version (e.g., fractions
whose numerators and denominators included other fractions, making a result
that would need to be recast to fit the answer box). We are confident we can
make design improvements to remedy this situation and, with advances in
handwriting recognition, eventually provide an input mechanism that may
approximate the ease of working with pencil and paper.

enerating Examples

As noted, the (modest) innovation of ME is that it allows us to present
problems that have correct answers taking many different quantitative surface
forms and score them automatically in real time. In terms of the framework
presented in Table 1, ME adds to the range of problem types that can be
presented within the “ well-structured quantitative” classification.
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As we have suggested, however, the problems within this classification
represent only a segment of the universe of mathematical tasks people face in
academic and work settings. To be sure, some portion of those tasks are more
amorphous or * ill-structured” (Simon, 1978).

It is, unfortunately, very difficult to score ill-structured problems
with standard computational methods, so such problems will not readily work
in adaptive tests. All the same, we should be able to widen the conception
of mathematical reasoning represented in adaptive tests by including tasks
that, to differentiate them from Simon’s (1978) conception, might be better
called ™ under-determined.” Our formulation, dubbed “ Generating Examples, ”
(GE) presents constraints and asks the test taker to pose one or more
instances that meet those constraints, where for any given problem there may
be many such instances that, in contrast to ME, are mathematically different.
As for their ill-structured cousins, not enough information is given to fix
the solution uniquely. But in contrast with ill-structured problems, there
is enough information to know when the problem is solved and, as a result,
Generating Examples questions can be automatically scored. Thus, GE provides
a practical mechanism for pushing the conception of mathematical problem
solving toward the “ ill-structured quantitative” cell of Table 1.

Table 3 gives instances of GE items. These instances call for either
the entry of values or, in the case of item #4, an expression. Note that
other objects, including letter patterns and lists (e.g., of multiple values)
could also be used.

How do GE items differ from conventional well-determined questions?
Nhouyvanisvong, Katz, and Singley (1997) have proposed a framework for
understanding the differences in terms of problem-solving strategy. Through
cognitive task analysis, they identified three strategies: generate-and-test
(useful for either problem type), formal algebraic (only useful for well-
determined problems), and a hybrid (also useful for either problem type).
Nhouyvanisvong et al. suggest that four cognitive processes are implicated in
the “ generate-and-test” approach. These processes are deriving explicit and
implicit constraints, estimating potential solutions, propagating values
through constraints, and updating the estimated solution. Deriving explicit
and implicit constraints is also required in the formal algebraic strategy
but once that is done, two processes not used in “ generate-and-test” are
required: combining constraints into equations and solving the final
equation. The cognitive processes implicated in both the formal algebraic
and generate-and-test approaches compose the hybrid strategy. Because the
examinee generates an algebraic equation and then creates values to propagate
through it, this strategy is essentially a “ plug-in” method. 1In essence,
the Nhouyvanisvong et al. analysis, suggests that by requiring either the
generate-and-test or hybrid approaches, GE forces the examinee to bring to
bear cognitive processes different from those needed to attack well-
determined problems via the formal algebraic strategy commonly emphasized in
school.
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Interface. Because GE items can be written to call for the entry of
different objects, this item class uses more than one interface. For GE
items calling for an expression, the ME interface can be used. Items
requiring input of single or multiple values can employ established
interfaces already used in operational computer-based tests (e.g., Praxis I)
to deliver conventional numeric entry items. Figure 2 shows a GE item and
interface allowing the entry of multiple values. -

Automatic scoring. GE items are scored by creating in executable code
a key that embodies the conditions an answer must meet to be correct.
Responses are then tested against these conditions by a superset of the
evaluation methodology used for ME.

Consider the following item:

If n and m are positive integers and 1ln-7m=1, what are two different
possible sets of values for n and m?

The conditions contained in the executable key would essentially
specify that a creditable response:

¢ Contain two pairs of values,
®¢ Have a second pair different from the first,
®* Have each member of each pair be a positive integer,

®* Return for the first pair a true result when its values are
substituted for n and m in the equation, 11ln-7m=1, and

®* Return for the second pair a true result when its values are
substituted for n and m in the equation, 1ln-7m=1.

The clean separation of these conditions raises possibilities for partial
credit scoring. For the moment, however, we have limited our analyses to
dichotomous grading.

So far, we’ve done only preliminary work on the accuracy of GE scoring
and only with item types other than ME (Bennett, Morley, Quardt, Singley,
Katz, & Nhouyvanisvong, in press). We did this work using responses to two
parallel 20-item tests. For these 40 items, we wrote automatic scoring keys
based solely on the constraints contained in the item stems (i.e., without
reference to the responses given by examinees). The items were taken by 257
volunteers who were either planning to apply to graduate school or were
already first-year graduate students {a considerably more heterogeneous
sample than the ones used to evaluate the ME response type). We randomly
selected 21 examinees for each form, machine and hand-scored their responses,
and compared the results. In all 840 cases (42 examinees x 20 responses),
the machine and manually generated dichotomous scores agreed. However, we
know that this result is slightly optimistic, at least with respect to GE
items that use the ME interface. For these items, there is the possibility
that examinees will occasionally formulate correct entries that can’t be
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meaningfully interpreted because of improper response entry (e.g., they
include unit labels as text).

Psychometric characteristics. Bennett et al. (in press) evaluated the
functioning of the GE response type in the sample mentioned above. The
Generating Examples tests were reasonably reliable, with internal consistency
estimates of .82 for each 20-item test. GE scores were moderately related to
the GRE General Test quantitative section (r = .66) and had a pattern of
relations with other GRE sections, UGPA, and self-reported accomplishments
that was similar to the pattern shown by the quantitative section. Even so,
GE’s disattentuated correlation with GRE quantitative did not approach unity,
suggesting the possibility that the two tests do not fully overlap. This
possibility is in keeping with the Nhouyvanisvong et al. (1997) model which
stipulates that, whereas there is some redudancy, GE does indeed evoke
cognitive processes--such as estimating potential solutions and propagating
values through constraints--that conventional mathematical questions often do
not.

Bennett et al. (in press) used this cognitive model to pose and
experimentally test several hypotheses about the determinants of GE item
difficulty. One consequence of the fact that GE questions can have many
right answers is that examinees can be required to give more than one
response. Bennett et al. found difficulty to be affected markedly by
requiring two pairs of examples instead of one, with those participants
randomly assigned to the multiple-response condition scoring about .6
standard deviations lower than the group required to give one pair of
examples to the same items. From the perspective of the Nhouyvanisvong et
al. (1997) model, the effect might come from having to repeat solution
processes, raising the chances that individuals with inadequate understanding
will falter.

Bennett et al. also examined GE's impact on women, as a preliminary
step in addressing fairness concerns. They found that men consistently
scored higher than women by about the same amount as on the General Test'’s
quantitative section. When they controlled for General Test scores, no
significant effects remained, suggesting that GE would not likely increase
gender differences beyond those already present on the General Test.

Ve Examinee perceptions. What do examinees think of Generating Examples
items? When asked for their perceptions of the Generating Examples response
type, examinees were evenly divided (40% to 39%) over whether GE was a fairer
indicator than multiple choice of their ability to succeed in graduate
education (Bennett et al., in press). At the same time, the overwhelming
majority (72%) said that they would prefer to take a multiple-choice test.
Such apparently contradictory sentiments in examinees’ perceptions of
constructed-response vs. multiple-choice items have been reported elsewhere
(e.g., Braswell & Kupin, 1993; Bridgeman, 1992). These sentiments may simply
represent a view of testing as nothing more than a necessary evil; that is,
taking a test that is easier to prepare for is better than taking a harder
one more relevant to graduate study.

Graphical Modeling

Both ME and GE encourage examinees to deal with problem situations
quantitatively (at least at the level of the final answer). But cognitive
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Table 4 presents some illustrative Graphical Modeling (GM) problems.
Note that such problems may depict either under-determined or well-determined
situations (putting GM within the " qualitative” row of Table 1.) To
illustrate the generality of the problem type, examples #4 and #5 are cast in
pure contexts that do not require qualitative modeling per se but do require
the examinee to demonstrate mathematical concepts graphically. Problem #4,
in particular, raises the possibility of testing geometry content more
directly than could be achieved with conventional item formats.

Interface. Figure 3 gives the GM interface. As indicated, each
problem is accompanied by a labeled and numerically demarcated set of axes.
The examinee’s task is to plot the necessary points and use the appropriate
tool (CURVE or LINE) to connect the points. Because the lines and curves are
drawn by the appropriate tool, the examinee can focus more on the substance
of the problem than the mechanics of responding.

The GM interface gives the examinee reasonably powerful editing
capabilities. The examinee can erase points one at a time in the reverse
order from which they were entered. He or she can also select a curve or
line and delete a chosen point, after which the curve or line is immediately
redrawn. Finally, an already-completed line or curve can be reshaped
dynamically, simply by selecting a point and dragging it to a new location.

We have collected data about the GM interface from 20 students, most of
whom were already enrolled in the first year of graduate school. All of
these students reported that they typically wrote school papers on computer,
and 19 of 20 indicated that they used a computer at least once a week. Most
found the GM interface easy to use, though six stated that they encountered
difficulty.

Much of the reported difficulty appeared to come from trying to enter
points between grid lines; the interface snaps such points to the nearest
intersection. This design decision was made so that the examinee could tell
exactly where each point was placed. Any line or curve will obviously have
intermediate points and, if the given scale is not used as a problem solving
constraint, the examinee may generate intermediate points only to find that
they cannot be plotted. One resolution is to give a default scale that will
work for the item but, at the same time, allow redefinition so that the
examinee can move intermediate points to the intersections as desired.
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mecthedology. Thus, the key encodes the conditions that any response must
me=t to e craditable and scores responses by evaluating them against these
conditions.

Consider the following question:

On the grid below, draw a triangle that has an area equal to 6 units.

The scoring key would essentially test the response to see if it:
e Contained three points,
* Had lines connecting the points, and

¢ Had an area equal to 6.

Though these conditions are clear and concise, specifying them
precisely in computer code so that responses can be scored unambiguously
requires effort and technical skill. For the GM response type to work
effectively in high-volume, high-stakes programs, key creation must be
efficient, undemanding of technical skill, and virtually fool-proof. These
same conditions also hold for GE scoring.

To address this problem, we are using general item classes each of

which has a single parameterized key. In principle, one would identify a
relatively small number of very large general classes, and then create, test,
and seal the parameterized keys. Test developers would use a simple tool to
specify the parameters and test the key for any given item. The evaluation
approach to ME already, in fact, works in much this way, where ME is the
general class, the correct expression is the parameter, and the parameterized
evaluation code is the single key that processes all responses in the class.

With respect to GM, an example of a general class (not yet implemented)
might be questions requiring the construction of geometric objects with given
dimensional characteristics. The sealed, uninitialized key would contain the
code to determine whether the examinee’s construction was of some to-be-
specified type and dimension. Once the item had been written, the test
developer would parameterize the key to reflect the conditions stated in the
item stem, probably by clicking on a menu of options. Parameters would
include the object (e.g., line, triangle, square, rectangle), dimensional
characteristic of interest (e.g., length, width, slope, area, perimeter), one
or more operators (e.g., equal to, greater than, less than), and one or more
values. Note that the test developer interface would need to restrict the
combination of some parameter types (e.g., line and area). Note also the

variety of GM questions that could be scored using the elements given in this
limited example.

Extended Constructed-Response Problems

We have argued that the three response types presented above can
broaden, if only modestly, the conception of mathematical problem solving
presented in computerized-adaptive tests. Even so, the tasks we used to
illustrate these response types have been relatively short, elemental, and
isolated. Such tasks arguably represent only a segment--and likely a small
one at that--of the important problems encountered in higher education.
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Consequently, it may be profitable to consider how we might create more
extended problem types for use in computerized tests.

One possibility is to build sets around common stimuli that give the
examinee a chance to become more immersed in a particular problem context--
and the questions related to it--than can occur with a series of unrelated
items. Figure 4 gives such a set adapted from the NCTM Standards (NCTM,
1989, p. 207), in which all three response types are combined {though not yet
in computer-deliverable form). Within the same problem context, then, the
examinee must deal with determined and under-determined tasks, and with
quantitative and qualitative representations.

For computerized adaptive tests, sets pose challenges. For one, there
may be some amount of conditional dependency among items that is not handled
within the usual item response models. Models to account for such dependency
are, however, emerging (e.g., Bradlow, Wainer, & Wang, in press). Also,
there are inevitably issues of how to balance validity, efficiency, and
generalizability. For example, if lengthier problems better represent the
criterion setting, an acceptable level of generalizability may require more
sets than available testing time would permit. Existing adaptive tests
utilize sets in reading comprehension for similar validity goals but limit
the number administered and intersperse other more efficient item types to
maximize generalizability.

Conclusion

This paper presented three automatically scorable response types for
computerized-adaptive admissions tests. We believe these response types have
the potential to broaden the conception of mathematical problem solving
embodied in such tests. This broadening involves using well-structured
quantitative problems that are more open-ended, admitting under-determined
problems, and giving greater emphasis to qualitative reasoning in both well-
determined and more loosely structured situations.

Although we have focused on adaptive testing, these response types
could also be used in other computerized testing frameworks like mastery or
linear testing. Certainly, there is good precedent for employing extended
constructed-response tasks in this way, as is the case with essays in the
computerized Graduate Management Admission Test or with design simulations in
the Architect Registration Examination (Bejar, 1995).

The work we’ve described is clearly in its beginning stages. One
worthy objective is to connect more fully with current conceptions of
mathematical problem solving. At a high level, it would seem desirable to
create test designs that better reflect cognitive psychological accounts
(e.g., Marshall, 1995), as well as discipline-based perspectives (e.g., NCTM,
1989) of mathematical proficiency. We would then use those designs to direct
development of additional response types and their assembly into more
theoretically coherent admissions test models. At a lower level, cognitive
task analysis would be helpful in establishing that the resulting response
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types did indeed call upon the processes implicated in these problem-solving
conceptions.

A stronger theoretical connection would likely suggest extending the
kinds of qualitative reasoning questions we can present. Informal reasoning
in mathematics not only involves expression through graphs but also through
diagrams, natural language, and other non-quantitative forms. We should be
able to construct interfaces that present questions and allow examinees to
manipulate objects like Venn diagrams to model underlying problem situations.
Similarly, we should be able to permit examinees to construct short verbal
explanations that justify their answers or that explain the problem
situation. By constraining the language that can be used and employing
advances in natural language processing, accurate scoring should be possible.
Having multiple ways to represent problem situations opens up the possibility
of presenting questions that require translating from one representational
mode to another, or even of allowing examinees to choose the reasoning mode
they are most comfortable with.

We and others have argued that the decision to use a new response type
in place of conventional multiple-choice items needs to weigh a broadly
defined view of benefits against costs (Bennett, 1993). For our three
response types, we have as yet only limited data to inform this view. We
have already suggested the benefit of improved construct representation and
made a preliminary case largely on theoretical grounds. BAmong other things,
we need to know more about how these response types differ from multiple
choice in their psychometric functioning and in the solution processes
examinees invoke when interacting with them. We need to know more about
their fairness for women and minority group members. Also, we must
understand something about their actual influences on teacher and student
behavior (although we would expect a positive outcome by virtue of better
construct coverage). Finally, we must complete analyses of scoring accuracy
and of the costs of using these response types in operational settings.

Computer-based testing offers an unrealized flexibility that goes well
beyond what we can feasibly do in large-scale paper-and-pencil admissions
testing programs. Realizing that potential won’t come immediately, easily,
inexpensively, or without mistakes (and it may even require temporary
retreats). Along with the more substantial innovations occurring in
licensure testing (e.g., Bejar, 1995; Clauser et al., 1997), the modest
attempts at innovation described in this paper hint at what may be possible
in the not-too-distant future, both within and beyond the adaptive testing
paradigm. We should expect that these innovations will accelerate as a
critical mass of infrastructure, operational programs, and research effort
coalesces, and as competition forces computer-based test providers to deliver
ever greater value to their constituents.
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A Broadened View of Mathematical Problem Solving
in Terms of Structure and Representation

Problem

Representation

Problem Structure

Well-structured

Ill-structured

Quantitative

Qualitative

Questions in multiple-
choice or open-end format
that have a single best
answer and emphasize
manipulating mathematical
forms.

Questions in multiple-
choice or open-ended
format that have a single-
best answer and emphasize
manipulating graphical,
diagrammatic, verbal or
other non-quantitative
forms.

Loosely formulated, open-
ended questions that have
multiple good answers and
emphasize manipulating
mathematical forms.

Loosely formulated, open-
ended questions that have
multiple good answers and
emphasize manipulating
graphical, diagrammatic,
verbal or other non-
quantitative forms.
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Table 2

Some Illustrative Mathematical Expression Items

1. If 12 eggs cost x cents and 20 slices of bacon cost y cents, what is the
cost in cents of 2 eggs and 4 slices of bacon?

2. If n is the average (arithmetic mean) of the three numbers é, 9, and k,
what is the value of k in terms of n?

3. If a certain object has been moving at the constant rate of x meters per
minute, how many meters has the object moved in the last y seconds?
Express your answer in terms of x and y.

Note. Item #2 and #3 are adapted from GRE Practicing to Take the General
Test Big Book, Princeton, NJ: Educational Testing Service, 1995.
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Table 3

Some Illustrative Generating Examples Items

Joe is driving cross country. He travels 3,000 miles in 60_hours,
switching cars somewhere along the way. The two cars have different
average speeds, each of which does not exceed 70 miles per hour. Give an
example of a speed and time for each leg of the trip.

If n and m are positive integers and 11n-7m=1, what are two different
possible sets of values for n and m?

- A company makes a profit of $3.30 on every hardback book it sells and a

profit of $1.20 on every paperback book it sells. Last month the company
sold more than twice as many paperback books as hardback books and it
made a profit of $3,960 on the books. How many books could the company
have sold last month?

-Two lines in the xy-coordinate plane are perpendicular. If the equation
of the first line is x + Sy = 17, what is a possible equation, in the
form y = f(x), of the second line? i
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Table 4

Some Illustrative Graphical Modeling Items

Suppose you are driving at a constant speed from New York to Washington,
DC, about 200 miles away. About 80 miles from New York you pass through
Philadelphia, Pennsylvania. Sketch a graph of your distance from
Philadelphia as a function of time from the beginning to the end of the
trip. (x = time in hours, y = distance in miles)

In a certain state, the income tax is calculated as shown below:
Income Tax

Less than $10,000 0%

$10,000 to $20,000 3% of the income over $10,000

Over $20,000 $300 plus 5% of the income over $20,000

On the graph below, plot the relationship between the tax in dollars to
income from $0 to $50,000. (x = income in dollars, y = tax in dollars)

Two years ago, John was taller than Susie. Last year, John and Susie
-were the same height. This year, Susie is taller than John. Plot
possible growth curves for John and Susie for the past two years,
assuming that each child has grown at least one inch per year. (x = time
in months, y = height in inches)

On the grid below, draw a triangle that has an area equal to 6 units.

Sketch a possible graph for a function that is decreasing everywhere,
concave up for negative x and concave down for positive x. (x, y)

Note. Axis labels are in parentheses.
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Figure 1

The Mathematical Expressions Interface with
an Example Item and Correct Response

~ GRE-Mathematical Reasoning

AR TR

A normal line to a curve at a point is a line perpendicular
to the tangent line at the point. The equation of the normal
line to the curve y = 2x* at the point (1, 2) is given by:

O Exponent
O Subscript

Note. Copyright (c) Educational Testing Service, 1996.
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Figure 2

A Generating Examples Problem with its Interface

A business needs to move cartons from its warehouses to its stores at a reasonable cost. Here are
the relevant data:

Number of Cartons at Each Warehouse Number of Cartons Needed at Each Store
Warehouse 1 | 5000 Store 1 ¢ 2000
Warehouse 2 4000 Store 2 ¢ 1000
Warehouse 3 3000 Store 3 8000
Store 4 ; 1000

Transportation Cost Per Carton Between Store and Warehouse
Store 1 Store 2 Store 3 Store 4
Warehouse 1 $1 $2 $2 $3
Warehouse 2 $2 $1 $2 $3
Warehouse 3 $2 $2 $1 $3

Fill in a distribution below. so each store will receive the number of cartons it needs. with a total
transportation cost below $24.000.

Number That Should Be Shipped Between Each Warehouse and Each Store.

0 0 0 ]
1] 0 0 0
0 0 i} 1]

Note. Copyright (c) Educational Testing Service, 1997.
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Figure 3

The Graphical Modeling Interface with a
Sample Problem and Correct Answer

Michael rode his bike for 3 miles at a constant speed, stopped far a while, and then rode back at constant
speed to his starting point. He arived back at his starting point 60 minutes after he started. On the axes
below. plot his distance from the start. in miles. as a function of time. for 0 minutes to 60 minutes.

3.00

2.50...

2.00

=
el
—l—'-"-'-'-'

Distance in miles

p—

1.50

1.00 /

0.0 10 20 30 40 50 60
Time in minutes

e

Note. Copyright (c) Educational Testing Service, 1998.
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Figure 4

An Extended Constructed-Response Problem
Incorporating All Three Response Types

Kevin

Hiroko

jéne José School
Michael
1 mile 2 miles

Jane, Jose, Michael, Kevin and Hiroko all travel along the same road on their
way to school each morning. Kevin and Michael walk, Hiroko is driven by her
father, and Jane and Jose ride bicycles to school. The map above shows the
school and where each person lives.

1. Kevin walks to school at a speed of 4 miles per hour. Write an expression
for the distance he is from school as a function of time, starting when he
leaves his house.

2. Jane must get to school before 9:00 am but not before 8:30 am. She can
ride her bike at any speed between 4 and 9 miles per hour, inclusive. Give a
possible time she can leave and the speed at which she should ride her bike.

3. Hiroko’s father is able to drive at 35 miles per hour along the straight
sections of the road but has to slow down for the corners. Sketch a graph on
the axes below to show how the car’'s speed varies along the route.

Note. Copyright (c) Educational Testing Service, 1998. Adapted from

" Curriculum and evaluation standards for school mathematics” by the National
Council of Teachers of Mathematics (NCTM), 1989, Reston, VA: National
Council of Teachers of Mathematics.




