
 
 

Developing Item Variants: An 
Empirical Study 

 

Anne Wendt 
National Council of State Boards of Nursing  

Shu-chuan Kao and Jerry Gorham 
Pearson VUE 

Ada Woo 
National Council of State Boards of Nursing  

 

Presented at the Item and Pool Development Paper Session, June 3, 2009 



Abstract  

Large-scale standardized test have been widely used for educational and licensure testing.  In 
computerized adaptive testing (CAT), one of the practical concerns for maintaining large-scale 
assessments is to ensure adequate numbers of high-quality items that are required for item pool 
functioning.   Developing items at specific difficulty levels and for certain areas of test plans is a well-
known challenge.   The purpose of this study was to investigate strategies for varying items that can 
effectively generate items at targeted difficulty levels and specific test plan areas. Each variant item 
generation model was developed by decomposing selected source items possessing ideal measurement 
properties and targeting the desirable content domains. 341 variant items were generated from 72 source 
items.  Data were collected from six pretest periods.  Items were calibrated using the Rasch model.  
Initial results indicate that variant items showed desirable measurement properties.  Additionally, 
compared to an average of approximately 60% of the items passing pretest criteria, an average of 84% of 
the variant items passed the pretest criteria.  
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Developing Item Variants: An Empirical Study 
 

Large-scale standardized tests have been widely used for educational and licensure testing.  
In computerized adaptive testing (CAT), one of the practical concerns for maintaining large-
scale assessments is ensuring the availability of adequate numbers of high-quality items that are 
required for item pool functioning.   Developing items at specific difficulty levels and for certain 
areas of test plans is a well-known challenge.   The purpose of this study was to investigate 
strategies for effectively generating items at targeted difficulty levels and specific test plan areas.  

Theoretical Background 

Earlier researchers (LaDuca, Staples, Templeton, & Holzman, 1986, Bejar, 1996) described 
item modeling as a construct-driven approach to test development that is potentially validity-
enhancing.   Earlier research focused on mirroring cognitive processes in answering surveys for 
psychological performance (Bejar, 1993; Embretson & Gorin, 2001; Embretson, 1999; Bejar & 
Yocom, 1991), with the intention of generating isomorphic items.  For large-scale testing, some 
item models are more statistics-driven (e.g., Glas & van der Linden, 2003) and others are more 
content-driven (e.g., Bejar, Lawless, Morley, Wagner, Bennett, & Revuelta, 2003).  Each item 
model provides templates that allow the decomposition of knowledge or skills and identification 
of the key components that constitute meaningful new items.   

As described by Shye, Elizur and Hoffman (1994), item features can be mapped into an item 
by a set of rules using Guttman’s (1969) facet theory.  That is, by identifying the fixed and 
variable elements in items, stimulus features are substitutable in the variable elements for 
generating structurally equivalent items. In this study, variant item models were developed by 
decomposing the selected source items possessing ideal measurement properties and targeting 
the desirable content domains.  The selected source items were operational items in a CAT 
examination for nurses and were used to set up the basic frame of the new items.  That is, the 
sentence structure in source items was fixed. Item length and grammatical syntax were also 
fixed.  Variant items can be defined as generated items from a model in which specific item 
stimulus features can vary.  As Table 1 shows, four item models were proposed to generate item 
variants. Ideally, the proposed models would generate variant items with similar item difficulty 
and other psychometric features. 

Method 

Data 

All variant items were administered as pretest items to at least 400 candidates in order to 
gather statistical information.  No more than three variant items generated from the same source 
item were selected for one pretest pool, and the administration of the pretest items was controlled 
through a masking process.  This strategy was used in order to reduce the possibility of 
administering similar items to the same candidate so that the candidate would not think the same 
item was administered twice.   

Procedures 

In this study variant items were evaluated for both classical test theory (CTT) and item 
response theory (IRT) properties using the exam data of first-time U.S.-educated candidates.  
Even though the CTT item statistics are sample dependent, comparisons are still legitimate when 
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item statistics are from random samples.  The random selection scheme implemented in the test 
driver ensured that candidates were exposed to items randomly sampled from the pretest pool.  
On the other hand, IRT parameters were calibrated using Winsteps, a Rasch-based computer 
program (Linacre & Wright, 2001). 

Table 1. Variant Item Models 

Item Model Definition in Item Development 

Key Delete original key and replace it with a new key 
Stem Change stimulus in stem 
Distractor Delete one original distractor and add a new distractor 

Add key 
Add key and extra distractor 
Add key and change stem 
Change key and distractor 
Change stem and distractor 
Change stem and key  

Other 

Change key, stem, and distractor 

In this report, the summary statistics of item p-value (proportion correct) difference, item-  
point-biserial correlation (rpb) difference, item response time difference, and item difficulty 
difference were provided. Due to the ideal scale properties provided by the Rasch model, the IRT 
item property (item difficulty difference) was explored with greater detail: the group-level 
comparison was conducted using analysis of variance (ANOVA) to ascertain whether the item b-
value (difficulty) difference shifted more for one group than for others; the item-level 
comparisons were performed using t-tests to determine whether the item b-value difference was 
significantly greater than calibration error.   

Results 

Using the proposed item models, the 341 variant items generated from 72 source items had 
enough item exposures (greater than or equal to 400) for analysis.  The average item exposure of 
the items in the analysis was 556.  As shown in Table 2, the percent of items passing pretesting 
was satisfactory.  The pretest passing rates varied from 78.85% to 100.00%.  Compared to an 
average of approximately 60% of the items passing pretest, 84% of the variant items passed the 
statistical pretest criteria. 

The summary statistics of the difference of item p-values between the source and that from 
variant items are reported in Table 3.  The p-value difference was calculated by subtracting the 
source item p-value from the variant item p-value.  As indicated in Table 3, the means of the p-
value difference for different models were similar, varying from 0.001 to 0.066.  However, the 
“Other” model exhibited a relatively large SD for p-value difference, indicating relatively huge 
discrepancies.  Concerning item type, MR items had a lower average item p-value than their 
source item by 0.240, indicating that variant items tended to be more difficult.  For all 341 
variant items in the analysis, the mean p-value difference was 0.016 with a SD of 0.186.  
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Table 2. Pretest Results of Variant Items  

 
 

Exam 
No. of Items 

in Pretest 

No. of items 
in Analysis 

(Exposure > 400) 
No. of Items 
Passed Pretest 

Percentage 
of Passing*

Pretest pool 1 147 93 74 79.57% 
Pretest pool 2 199 104 82 78.85% 
Pretest pool 3 21 20 18 90.00% 
Pretest pool 4 61 59 53 89.83% 
Pretest pool 5 31 31 31 100.00% 
Pretest pool 6 34 34 27 79.41% 
Total 493 341 285 83.58% 

*(Number of items passed pretest) / (Number of items in analysis). 

 

 

Table 3. Summary Statistics of Item p-Value Difference 

Factors N     Mean    SD    Minimum   Maximum 

Item model      
  Key 71 0.001 0.190 0.465 0.330 
  Stem 105   0.039 0.159 0.661 0.445 
  Distractor 101   0.066 0.124 0.271 0.425 
  Other 64 0.080 0.257 0.613 0.443 
Item type      
  FC 39   0.063 0.092 0.111 0.289 
  MC 269   0.041 0.169 0.661 0.445 
  MR 33 0.240 0.204 0.613 0.099 
Total 341   0.016 0.186 0.661 0.445 

 

Table 4 reports the summary statistics the difference between the item-  point-biserial 
correlation of the source and that of the variant items. This type of point-biserial correlation 
reflects the association between the item scores (0 = incorrect, 1 = correct) and the CAT final  
estimates.  The difference of the item-  point-biserial correlation was calculated by rpb(diff) = 
variant item rpb – source item rpb 

As Table 4 shows, the means of rpb(diff) for item models varied from 0.034 to 0.062.  The 
means of rpb(diff) for item type were similar, ranging from .053 to 0.007.  Among three item 
types, FC items had the smallest mean rpb(diff) of 0.007 with the smallest SD of 0.047, indicating 
that FC variant items had stable item discrimination power.   Overall, the item-  point-biserial 
correlation difference had a mean of 0.045 and a SD of 0.083. 
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Table 4. Summary Statistics of rpb(diff) 

Factors N Mean SD Minimum Maximum 

Item model      
  Key 71 -0.062 0.095 -0.265 0.150 
  Stem 105 -0.034 0.074 -0.280 0.138 
  Distractor 101 -0.045 0.079 -0.232 0.164 
  Other 64 -0.043 0.087 -0.348 0.086 
Item type      
  FC 39  0.007 0.047 -0.091 0.109 
  MC 269 -0.053 0.087 -0.348 0.164 
  MR 33 -0.038 0.052 -0.162 0.067 
Total 341 -0.045 0.083 -0.348 0.164 

 

The summary statistics in Table 5 describe the difference between response time of the 
source and that of the variant items.  The difference of the item response time was calculated as 
variant item response time minus source item response time. The means of the response time 
difference for item model varied from 1.546 to 10.431 seconds.  The means of the response 
time difference for item type varied substantially.  FC items had a large mean response time 
difference of 31.024 seconds with a SD of 48.635 seconds, indicating that the time required to 
process nursing computation was considerably different among candidates.  On the contrary, for 
MC items the response item difference was only 1.160 with a SD of 8.571.  Overall, the item 
response item difference had a mean of 4.775 seconds and a SD of 21.650 seconds. 

 

Table 5. Summary Statistics of Response Time Difference in Seconds 

Factors N Mean SD Minimum Maximum 
Item model   

  Key 71 0.478 7.952 21.622 20.350 
  Stem 105 10.431 33.845 79.131 95.081 
  Distractor 101 1.546 8.785 30.178 14.002 
  Other 64 10.236 16.658 23.249 46.051 
Item type      
  FC 39 31.024 48.635 79.131 95.081 
  MC 269 1.160 8.571 30.178 20.350 
  MR 33 22.132 10.472 4.441 46.051 
Total 341 4.775 21.650 79.131 95.081 

 

In Table 6, the summary statistics of the difference between the item b-value of the source 
and that of the variant items are reported.  The item b-value was calibrated from the Rasch 
model, which estimates item difficulty on the logit scale.  The difference of b-values was 
calculated by the formula b(diff) = variant item b-value – source item b-value. 
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The means of b(diff) for item model varied from 0.013 to 0.589.  The means of b(diff) for 
item type varied substantially.  MR items had a large mean b(diff) of 1.518 with a large SD 
1.201.  MC items had a small mean b(diff) of 0.056 with a SD of 0.840.  For all 341 items, 
b(diff) had a mean of 0.173 and a SD of 0.955. 

 

Table 6. Summary Statistics of b(diff)  

Factors N Mean SD Minimum Maximum 

Item model      
  Key 71 0.291 0.905 -1.698 2.559 
  Stem 105 0.017 0.776 -2.205 3.672 
  Distractor 101 -0.013 0.631 -2.388 1.632 
  Other 64 0.589 1.448 -2.421 5.013 
Item type      
  FC 39 -0.165 0.422 -1.079 0.552 
  MC 269 0.056 0.840 -2.421 3.672 
  MR 33 1.518 1.201 -0.025 5.013 
Total 341 0.173 0.955 -2.421 5.013 

 

For the convenience of describing the distribution of b(diff) for item model, item type, and 
content area, Figures 1 to 3 provide box plots for each subgroups of interest. 

 

Figure 1. Box Plot of b(diff) for the Variant Item Model 
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Figure 2. Box Plot of b(diff) for the Variant Item Type 
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Figure 3.  Box Plot of b(diff) for the Test Plan 
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In order to test the group-level b-value difference, a two-way ANOVA was performed, using 
the factors item type and variant model.  The ideal design would be to include the test plan in the 
three-way ANOVA model, but the resulting empty cells in the joint distribution could cause 
serious problems in the significant test.   
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First, Levene’s homogeneity test was significant (F(7, 333) = 5.519, p< .05), indicating that the 
variances in the different groups of the 4 (item model)  3 (item type) design were not 
homogeneous.  According to Lindman (1974, p. 33) and Box (1954), the F statistic is quite 
robust against the violations of the homogeneity assumption.  The F test can provide information 
concerning the group mean difference but special caution should be paid in interpreting the 
results.   

The ANOVA model in Table 7 was significant (F(7, 333) = 15.681, p < .05), indicating that at 
least one group mean was significantly different from others.  Given that the interaction of item 
model and item type was not significant (F(2, 333) = 0.203, p > .05), it was appropriate to explore 
the main effects for item model and item type.  The main effect for item model was significant 
(F(2, 333) = 8.379, p < .05) with an effect size of 0.067. The main effect of item type was also 
significant (F(3, 333 )= 2.644, p < .05) with a effect size of 0.033. 

Table 7. Summary Results From a Two-Way ANOVA 
 

Source SS df MS F Sig. Partial η2 
Corrected model 76.811(a) 7 10.973 15.681   .248 
Intercept 5.945 1 5.945 8.496 .004 .025 
Item model 16.758 2 8.379 11.974 .000 .067 
Item type 7.931 3 2.644 3.778 .011 .033 
Item model  Item type .284 2 .142 .203 .816 .001 
Error 233.023 333 .700     
Total 319.992 341      
Corrected total 309.834 340      

      Note. R2 = .248 (adjusted R2 = .232). 

 

In order to identify which group means were different from others, Bonferroni’s post-hoc 
comparison was conducted for factor variant model and item type, respectively.  Tables 8 and 9 
tabulate all possible paired comparisons for item model and item type, respectively. Concerning 
item model, the “Other” model seemed to generate harder items more often than the Stem and 
Distractor models.  With regard to item type, MR variant items tended to have a positive shift on 
item difficulty more often that the FC and MC variant items.  Since the interaction was not 
significant, it is legitimate to conclude that items generated from the “Other” model with the item 
type of MR tended to have a more noticeable positive shift on item difficulty than the rest of the 
variant items.  
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Table 8. Multiple Comparisons for Different Item Models 

 
(I) Item 
Model 

(J) Item 
Model 

Mean 
Difference

(I-J) 
Std. 

Error Sig.

95% CI 
Upper 
Bound 

95% CI
Lower 
Bound

Key Stem   0.274 0.129 0.204 0.067 0.615
  Distractor   0.303 0.130 0.119 0.040 0.647
  Other 0.298 0.144 0.236 0.681 0.084
Stem Key 0.274 0.129 0.204 0.615 0.067
  Distractor   0.030 0.117 1.000 0.280 0.339
  Other   0.572* 0.133 0.000 0.924 -0.220
Distractor Key 0.303 0.130 0.119 0.647 0.040
  Stem 0.030 0.117 1.000 0.339 0.280
  Other   0.602* 0.134 0.000 0.956 -0.247
Other Key   0.298 0.144 0.236 0.084 0.681
  Stem     0.572* 0.133 0.000 0.220 0.924
  Distractor     0.602* 0.134 0.000 0.247 0.956

   *The mean difference was significant at the .05 level. 

 

Table 9. Multiple Comparisons for Item Types 

 
(I) Item 
Type 

 
(J) Item 
Type 

Mean 
Difference 

(I-J) 

Std. 
Error Sig.

95% CI 
Upper 
Bound 

95% CI
Lower 
Bound

FC MC 0.221 0.143 0.373 0.566 0.124
  MR  1.683* 0.198 0.000 2.159 1.207
MC FC 0.221 0.143 0.373 0.124 0.566
  MR 1.462* 0.154 0.000 1.833 1.091
MR FC   1.683* 0.198 0.000 1.207 2.159
  MC   1.462* 0.154 0.000 1.091 1.833

* The mean difference was significant at the .05 level. 

 

In addition to comparing the group-level b-value differences, item-level analysis was 
conducted to explore whether the b-value differences were significantly different from random 
error in test calibration. The decision of significant difference was determined by calculating the 
95% confidence interval using the calibration standard error.   As shown in Table 10, the “Stem” 
model generated the highest percentage of items (37.14 %) that had different b-values from the 
source items.  Concerning item type, FC had the highest percentage of items (43.59 %) that 
exhibited significantly different b-values. Overall, 23.17% of variant items had significant b-
value changes, indicating truly easier or more difficult items. 
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Table 10. Item-Level Significant Tests of b-Value Differences  

Sig. 
Item Model Item Type Yes No Total 

Key MC  0 1 1 
  MC 7 32 39 
  MC 2 8 10 
  MC  0 11 11 
  MC  0 2 2 
  MC 1 6 7 
  MC 1  0 1 
Stem MC 2 21 23 
  MC 8 6 14 
  MC 6 9 15 
  MC 4 4 8 
  FC 15 18 33 
  MC 4 5 9 
  MC  0 3 3 
Distractor MC 2 25 27 
  MC 7 16 23 
  MC 6 19 25 
  MC 2 11 13 
  MC 1 6 7 
  MR  0 1 1 
  MC  0 1 1 
  MC 2 2 4 
Other MC 1 1 2 
  MC 2 2 4 
  MC 1  0 1 
  MC  0 7 7 
  MR 2 24 26 
  FC 2 4 6 
  MC 1 6 7 
  MR  0 6 6 
  MC  0 1 1 
  MC  0 4 4 
Key Total   11 60 71 
Stem Total   39 66 105 
Distractor Total   20 81 101 
Other Total   9 55 64 
  0 1 1 
  12 79 79 
  19 32 32 
  13 39 39 
  0 2 2 
  9 52 52 
  24 46 46 
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Table 10, continued  
Item-Level Significant Tests of b-Value Differences  

Sig. 
Item Model Item Type Yes No Total 

 

  0 2 2 
  2 9 9 
 FC Total 17 22 39 
 MC Total 60 209 269 
 MR Total 2 31 33 
Grand Total   79 262 341 

       Note:. the significant difference level was α = .05. 

 
Conclusions 

The purpose of this study was to propose item models that can effectively generate items at 
targeted difficulty levels and specific test plan areas.  Based on the results from this study, the 
four proposed item models can generate item variants with higher passing rate for pretests based 
on the statistical criteria.  Concerning the group-level item difficulty shift, the “Other” model 
with the MR item type had the largest b-value increase.  At the item level, 76.83% variant items 
did not have a significantly different item difficulty shift.  These items can be considered to be 
isomorphic items of the item variant source.  In summary, the proposed variant item models offer 
an efficient way to develop items possessing desirable psychometric characteristics. 

Other than generating items for CAT pools, the proposed models can be further expanded to 
investigate the construct validity for the current licensure exams.  As Embretson (1983) 
indicated, manipulating item stimulus features directly impacts one aspect of construct validity 
or the construct representation.  The identified components, along with the associated item 
stimulus features, are the basis for the item specifications. The knowledge and cognitive abilities 
involved in the item-solving process can be better identified and verified if the proposed models 
can be expanded to incorporate cognitive theories and can be continued in the future.   

Another possible direction to expand this research is the explanation of the association of 
item similarity and the change of item psychometric properties.  Whichever item model is 
employed, multiple variant items can be generated from a single source item, and the “family-
wise” item statistics shift can be an interesting topic for investigation. By comparing the 
semantic content of test items, the functioning of item models can be better explained and 
supported.   

It is expected that the use of variant item models can make item development more cost-
efficient and less labor-intensive. Most importantly, the characteristics of the new items seem to 
be better controlled and more predictable than the “standard” methods for developing items (item 
writing and item review).  Though this research was based on specific licensure exams, the 
methodology of this study might be applicable to other testing programs.  
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