

Anna van der Gaag M.Sc, Ph.D, CBE Robert Jago M.Phil (Cantab)

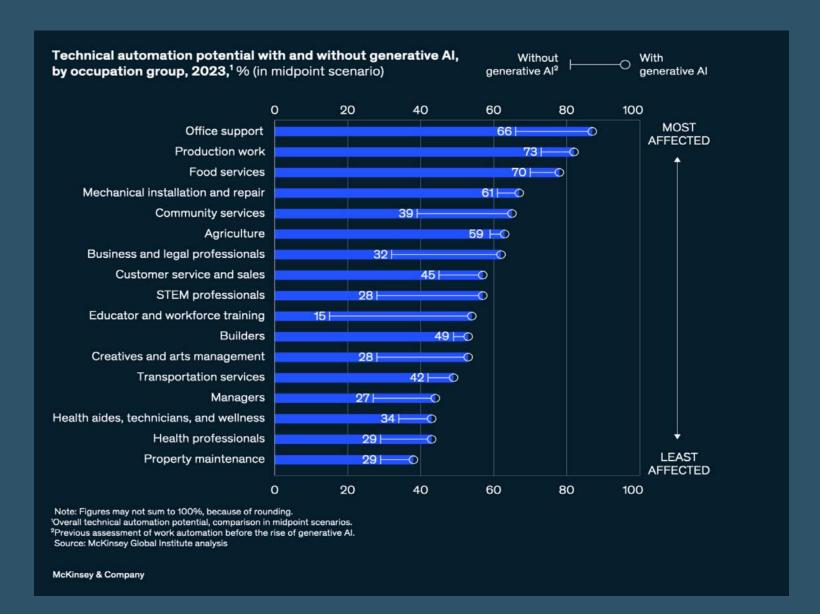
NCSBN Scientific Symposium, Scottsdale, Arizona 23-24 January 2024

with thanks to our colleagues Professor Kostas Stathis, Dr Ivan Petej

Dr Piyawat Lertvittayakumjorn, Dr Yamuna Krishnamurthy, Dr Gan Yeo, Dr Michelle Webster (Formerly RHUL)

Professor Ann Gallagher (Brunel University, UK)

Professor Zubin Austin (University of Toronto, Canada)


and our funders the Centre for Regulatory Excellence at NCSBN

The AI trajectory

- Nurse Discipline
- There are a small number of high risk nurses
- 70+% of cases require no regulatory action
- Better use of data may help to focus on higher order risks and improve regulation

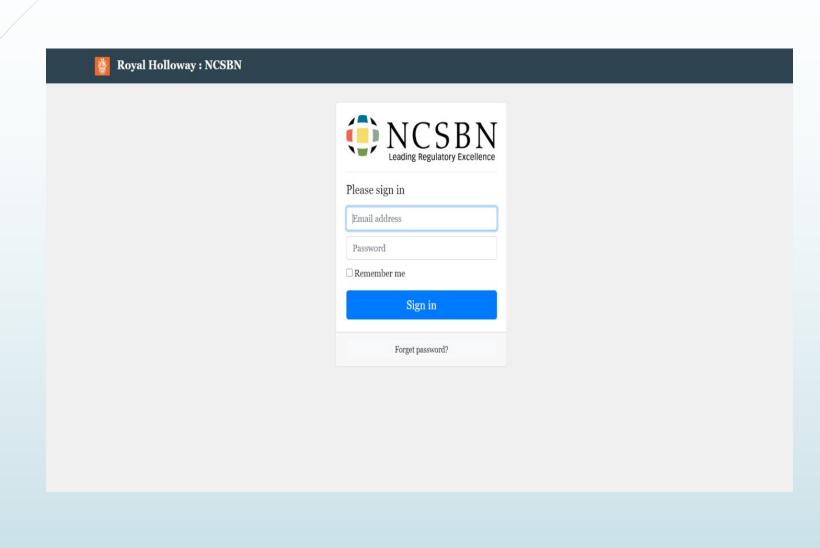
Research Question

Can we develop new tools to aid regulatory decision making in disciplinary work?

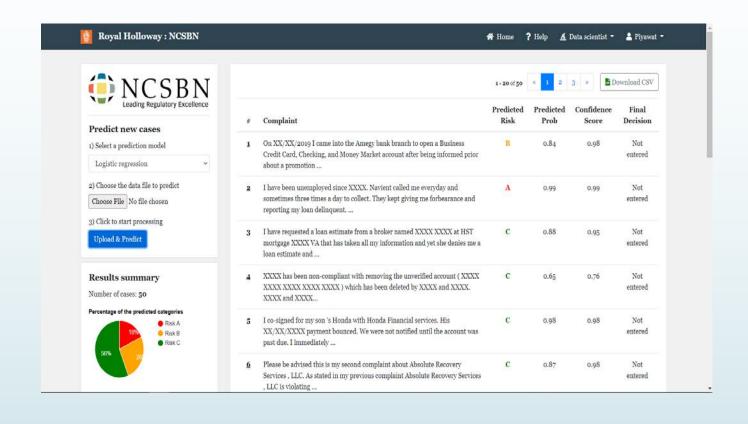
Aim

- Calculate risk level using anonymized data
- Link cases to regulatory standards
- Link cases to previous similar cases
- Reduce the workload for regulators

Design principles fairness, accountability sustainability transparency (Leslie, 2019)

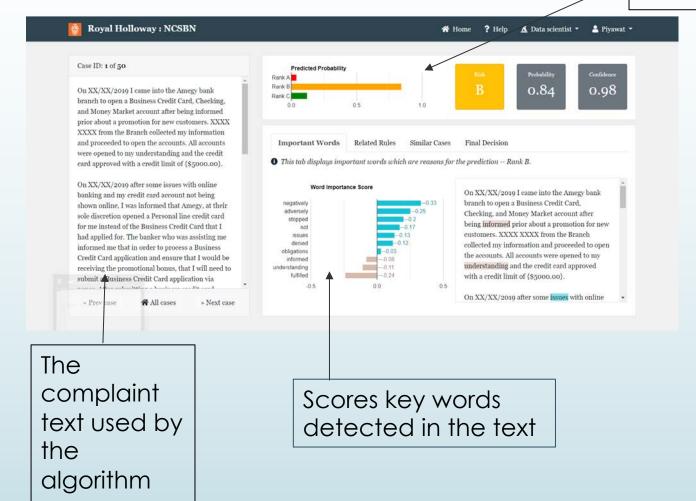


Methodology

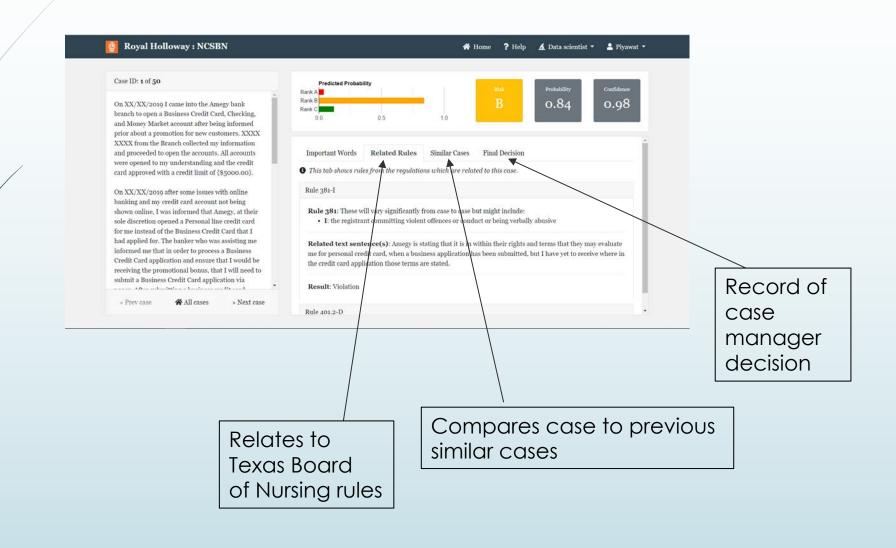

Quantitative and Qualitative

- > 5,700 (anonymized) disciplinary cases (US,UK,Australia)
- Reliability testing of prototype
- Gender debiasing techniques
- Qualitative testing with regulatory staff

An overview of the prototype decision support tool



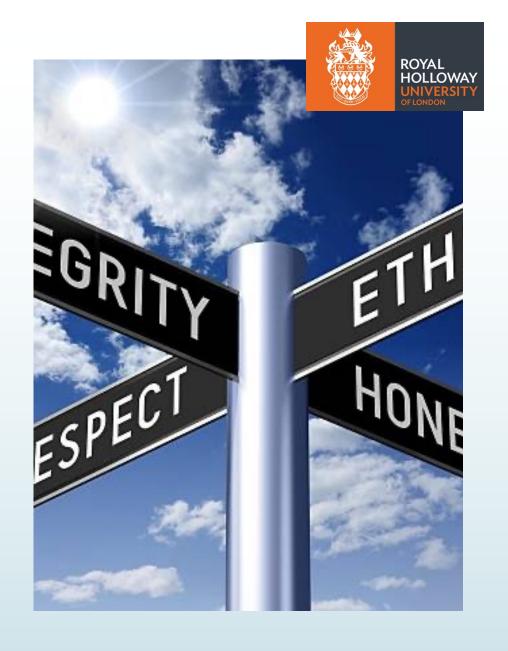
Task 1: calculating risk using anonymized data



Tool highlights key elements used in the prediction of risk category

Predicted risk level, probability & confidence

Task 2 & 3: compare current case with rules and previous similar cases


Reliability results: Phase 1 testing

1241 cases

Model	Accuracy
Majority Baseline	0.617 ± 0.032
C1: Gradient Boost.	0.671 ± 0.025
C2: AdaBoost	0.646 ± 0.028
C3: CNNMultiTask	0.668 ± 0.029
C4: BERT-base	0.680 ± 0.038
C5: Meta info	0.662 ± 0.029
Ensemble model	$\textbf{0.708} \pm \textbf{0.036}$

General ethical concerns

- Michael Sandel (2018)
 - Privacy and surveillance
 - Bias and discrimination
 - The role of human judgment
- Gabrielle Wolf (2020)
 - Equality before the law
 - Transparency and accountability
 - Consistency and predictability
 - Right to privacy
 - Right to work

Themes raised in our research

Negotiating trust and trustworthiness

Affirming fairness and nondiscrimination

Managing burdens and benefits

Conclusions

..From data to policy?

- ✓ Using AI tools in nurse regulation is feasible
 & has the potential to bring benefits
- ✓ This work needs replication with a larger US dataset involving multiple states
- Engagement with regulatory staff, nurses and patients essential to successful integration

References

Austin, Z., van der Gaag, A., Jago, R., Gallagher, A., Zasada, M., Banks, S. (2019) Understanding complaints to regulators about paramedics in the UK and social workers in England: findings from a multi method study, *Journal of Medical Regulation*, 104, 3, 19-28

Jago, R. van der Gaag, A., Stathis, K., Petej, I., Lertvittayakumorn, P., Krishnamurthy, Y., Gao, Y., Caceres Silva, J., Webster, M., Gallagher, A. & Austin, Z. (2021) Use of Artificial Intelligence in Regulatory Decision-Making, *Journal of Nursing Regulation*, 12(3), 11-19.

Lertvittayakumjorn, P., Petej, I., Gao, Y., Krishnamurthy, Y., van der Gaag, A., Jago, R., Stathis, K.. (2021) Supporting complaints investigation for nursing and midwifery agencies. 59th meeting of the Association of Computational Linguistics https://aclanthology.org/2021.acl-demo.10.pdf

Leslie D (2019) Understanding AI ethics and safety: a guide for the responsible design and implementation of AI systems in the public sector https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3403301

Sandel, M. J. The Ethics of Artificial Intelligence. Foreign Affairs, 2018, 97(4), 10-16.

Van der Gaag, A., Jago, R., Gallagher, A., Stathis, K., Webster, M., Austin, Z. (2023) Artificial Intelligence in Health Professions Regulation: An Exploratory Qualitative Study of Nurse Regulators in Three Jurisdictions. *Journal of Nursing Regulation*, 14 (2), 10-17.

Van der Gaag, A., Gallagher, A., Zasada, M., Jago, R., Banks, S, Austin, Z. (2017) People like us? Understanding complaints about paramedics and social workers https://www.hcpc-uk.org/resources/reports/2017/people-like-us-understanding (-complaints-about-paramedics-and-social-workers/

Wolf, G. (2020) 'Embracing the future: Using Artificial Intelligence in Australian Health Practitioner Regulation' 28 JML 21

Thank you

Q & A

a.vandergaag@surrey.ac.uk robert.jago@rhul.ac.uk